

1st International Motor Impairment Conference

Sydney, 2018

A novel group-based stepping exercise program to improve fall risk factors in older adults: first results of a pilot study

Eleftheria Giannouli, Tobias Morat, Jessica Coenen, Stephan Bandelow, Wiebren Zijlstra

Avoiding a trip/slip in real life requires:

- fast stepping movements
- high foot placement accuracy

Age-related changes in spatiotemporal characteristics of stepping for balance:

- slower stepping reactions (Pijnappels, Delbaere, Sturnieks, & Lord, 2010)
- too short steps or steps in a wrong direction (Chapman & Hollands, 2006b, 2007)
- collision of one leg against the other during oblique steps (Maki & McIlroy, 2006)

Effective falls prevention training regimes should:

- focus on performing precise, rapid and well-directed steps
- include a cognitive component
- have a high difficulty level (i.e. including challenging balance exercises)

Stepping training has been found to be particularly effective in reducing falls (Okubo, Schoene & Lord, 2016)

Existing stepping training programs often lack in:

- ➤ variation
- > complexity
- possibility to gradually and systematically increase loading in order to check for dose-response effects

Aim

To develop a balance training program that incorporates the execution of **multidirectional** voluntary steps with **varying speeds** and in **dual-/multi-tasking** conditions which aims to improve **postural control**, **cognitive functioning** and balance-related **self-efficacy** and allows **dose-response** assessments

Methods

Intervention group: "StepIt" Training Program for 9 weeks **Control group**: continued with their normal activities

<u>Equipment</u>

- ✓ Stepping Mats
- ✓ Metronome & Speakers
- ✓ Flipchart
- ✓ (Additional small items for DT and MT conditions)

90x90cm: 9 squares * 30x30cm each Quasi-design

Session structure (2x/week)

10 Min Warm-Up 45 Min Stepping 5 Cool-down

Per group: 10 Persons & 2 Trainers

Methods

Methods

Principles for increasing difficulty level

- Motor load
- Direction and length of steps
- > Execution pace

Cognitive load

- Number of steps for each pattern
- Additional motor/cognitive tasks

Maak	Steps	Pace (BPM)		Direction of		
week		RF/LF	BF	Feet Placement		
1	3	92-100	64-78			
2	1	100-108	78-86	Forward, Side & Back	Single Task (ST)	
3	4	108-110	86-88			
4	5	110-112	88-90	Forward, Side & Back		
5	c 110 90-92		90-92	9 Skipping middle line (SML)	Dual-Tasking (DT)	
6	0	112	94-96	& skipping middle mie (sivic)		
7	7	114	96-98			
8	0	116	98-100	Forward, Side, Back, SML & oblique steps	Multi-Tasking (MT)	
9	ð	118	102-104			
RF						

RF: Right Foot LF: Left Foot BF: Both feet

Inclusion criteria:

- >60 years old
- Physician's written statement of non-objection for participation
- Neither quit nor initiate regular sporting activities

Exclusion criteria:

- Cognitive impairment
- Neurological/cardiovascular/orthopedic diseases which could interfere with functional mobility
- Inability to stand up from a chair independently
- Severe sensory impairments
- Unable to commit to at least 80% of exercise sessions

Sample: n=40 (IG: n=20)

	ALL	IG	CG
Women (%)	50	55	45
Retired (%)	85	85	85
Sports on a regular basis (%)	80	80	80
Self-reported balance problems (%)	53	40	65
Fallers (%)	66	69	62
Fear of Falling (%)	45	55	35
Regular medication intake (%)	75	75	75
Chronic Diseases (%)	54	61	47
Age	70 (±8.2)	70.3(±6.3)	69.8 (±9.9)
BMI	26.5 (±4.9)	26.0 (±3.8)	27.1(±5.8)
Education (years)	15.0 (±5.8)	16.4 (±4.7)	13.6 (±6.5)
IPAQ	5745.5 (±3702.7)	5766.6 (±3895.4)	5724.4 (±3600.9)

IC: Intervention Group CG: Control Group BMI: Body Mass Index IPAQ: International Physical Activity Questionnaire

Adherence & Participants' Feedback

Dropouts: n=1 (in week 7)

Adherence: 85.3%

67% reported positive effects on their balance/coordination

Significant time*group interactions for:

Physical

- Four Square Step Test (Single-Task)
- Four Square Step Test (Dual-Task)
- 5xSit-to-Stand
- Maximum Step Length Test
- Multi-Target Stepping Task (Single-Task)
- Multi-Target Stepping Task (Dual-Task)
- Postural sway (jerk) (normal standing)
- Postural sway (jerk) (tandem)
- Stride Length
- Stride Velocity
- iTUG (Single-Task)
- iTUG (Dual-Task)

Cognitive

- Digit Span
- Reaction Time

Psychological

- Falls Efficacy Scale
- Activities-specific Balance Confidence

 \succ

Conclusions

Discussion

- High adherence
- Positive feedback

No adverse events

The training is feasible

Consistent interaction effects on dual-task performance (no effects on single task conditions)

Next steps

- Improve intensity adjustment/progression
- Increase intervention duration
- Apply to a more fall-prone sample
- Find ways to check for correct execution

Horizon 2020 European Union Funding for Research & Innovation

http://www.activeageing.unito.it/

Thank you very much for your attention!

- Chapman, G. J., & Hollands, M. a. (2006a). Evidence for a link between changes to gaze behaviour and risk of falling in older adults during adaptive locomotion. *Gait & Posture, 24*(3), 288–94. http://doi.org/10.1016/j.gaitpost.2005.10.002
- Chapman, G. J., & Hollands, M. A. (2006b). Age-related differences in stepping performance during step cycle-related removal of vision. *Experimental Brain Research*, 174(4), 613–621. <u>http://doi.org/10.1007/s00221-006-0507-6</u>
- Maki, B. E., & McIlroy, W. E. (2006). Control of rapid limb movements for balance recovery: agerelated changes and implications for fall prevention. *Age and Ageing*, *35*(Supplement 2), ii12ii18. <u>http://doi.org/10.1093/ageing/afl078</u>
- Pijnappels, M., Delbaere, K., Sturnieks, D. L., & Lord, S. R. (2010). The association between choice stepping reaction time and falls in older adults--a path analysis model. *Age and Ageing*, 39(1), 99–104. <u>http://doi.org/10.1093/ageing/afp200</u>
- Verhaeghen, P., Steitz, D. W., Sliwinski, M. J., & Cerella, J. (2003). Aging and dual-task performance: A meta-analysis. *Psychology and Aging*, *18*(3), 443–460.
- Schoene, D., Delbaere, K., & Lord, S. R. (2017). Impaired Response Selection During Stepping Predicts Falls in Older People—A Cohort Study. *Journal of the American Medical Directors Association*. <u>http://doi.org/10.1016/j.jamda.2017.03.010</u>
- Schoene, D., Lord, S. R., Verhoef, P., & Smith, S. T. (2011). A novel video game–based device for measuring stepping performance and fall risk in older people. *Archives of physical medicine and rehabilitation*, *92*(6), 947-953.

- Melzer, I., Melzer, I., Kurz, I., Shahar, D., & Oddsson, L. I. E. (2010). Do voluntary step reactions in dual task conditions have an added value over single task for fall prediction? A prospective study. *Aging Clin Exp Res*, 22(5), 6–360.
- Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. *Journal of cognitive neuroscience*, *19*(5), 893-906.
- Vasudevan, E. V., & Bastian, A. J. (2009). Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. *Journal of Neurophysiology*, *103*(1), 183-191.
- Choi, J. T., & Bastian, A. J. (2007). Adaptation reveals independent control networks for human walking. *Nature neuroscience*, *10*(8), 1055-1062.
- Reisman, D. S., Wityk, R., Silver, K., & Bastian, A. J. (2009). Split-belt treadmill adaptation transfers to overground walking in persons poststroke. *Neurorehabilitation and neural repair*, 23(7), 735-744.
- Thompson, T. W., Waskom, M. L., & Gabrieli, J. D. (2016). Intensive working memory training produces functional changes in large-scale frontoparietal networks. *Journal of cognitive neuroscience*.
- Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: are there age-related differences in plasticity of attentional control?. *Psychology and aging*, *20*(4), 695.
- Shigematsu, R., & Okura, T. (2006). A novel exercise for improving lower-extremity functional fitness in the elderly. *Aging clinical and experimental research*, *18*(3), 242-248.