Neural drive to the diaphragm in cervical spinal cord injury

David Nguyen, Chaminda Lewis, Claire Boswell-Ruys, Anna Hudson, Simon Gandevia and Jane Butler

Background

- Neural control of breathing
- Spinal innervation of the respiratory muscles
 - Diaphragm (C3-C5)
- Cervical spinal cord injury
 - Partial paralysis of diaphragm
 - Reduced inspiratory capacity
 - Increased neural drive following unilateral cervical spinal cord contusion in rodents (Rana et al., 2016)

Aims & Hypotheses

- Determine if there are changes in discharge properties of diaphragm motor units in people with tetraplegia
 - Increase in motor unit output
- Determine if there are neurogenic changes in diaphragm motor units in people with tetraplegia
 - Larger motor unit potentials

Methods

Participants:

- Tetraplegia
 - n = 6
 - Aged 59 ± 10 years (mean \pm SD)
 - BMI 25 \pm 2 kg/m²
 - C3-C6, AIS A-C, chronic
 - MIP: $46 \pm 15 \text{ cmH}_2\text{O}$
- Able-bodied controls
 - n = 6
 - Aged 59 ± 14 years
 - BMI 26 \pm 2 kg/m²
 - MIP: $104 \pm 34 \text{ cmH}_2\text{O}$

Recording:

- Seated and during quiet breathing
- Ultrasound imaging
- Intramuscular EMG electrode

Motor unit extraction from a participant with tetraplegia

Motor Unit Frequencies & Times

	Tetraplegia	Able-bodied control	<i>P</i> -value	
Onset discharge frequency (Hz)	10.9 ± 3.3*	8.7 ± 1.8	0.017	
Peak discharge frequency (Hz)	17.2 ± 5.0*	12.4 ± 2.2	< 0.001	
Offset discharge frequency (Hz)	$9.0 \pm 3.8^*$	6.7 ± 1.6	0.040	
Tidal volume (I)	0.64 ± 0.12	0.70 ± 0.19	0.081	
Inspiratory time (s)	1.65 ± 0.30	1.71 ± 0.39	0.172	
Mean flow (I/s)	0.39 ± 0.05	0.41 ± 0.10	0.322	Mean ± S

Increase in discharge frequency suggests an increase in neural drive to the diaphragm during quiet breathing in tetraplegia

SMU Duration

Diaphragm motor unit potentials are larger in tetraplegia

Summary

In tetraplegia:

 Diaphragm motor unit discharge frequencies are higher during quiet breathing

Diaphragm motor unit potentials are larger

Physiological Mechanisms

Increase in discharge frequency of diaphragm motor units

- Following cervical spinal cord injury, diaphragm muscle strength is reduced
- Diaphragm motor unit discharge frequency increases as an adaptation to maintain ventilation

Increase in size of diaphragm motor unit potentials

- Damaged phrenic motoneurones denervate their diaphragm muscle fibres
- Remaining phrenic motoneurones innervate denervated muscle fibres
- Innervating a larger number of muscle fibres results in a larger motor unit action potential

Acknowledgements

- Dr. Chaminda Lewis
- Dr. Claire Boswell-Ruys
- Dr. Anna Hudson
- Prof. Simon Gandevia
- Prof. Jane Butler
- Participants
- Australia National Health and Medical Research Council & Research Training Program