Prediction of performance from muscle models

James M. Wakeling

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Canada

Muscles are used for mobility, stability and

Dickinson et al., Science 2000

Length measurements in human muscle

Llewellyn et al. Nature 2008

Lieber et al. J.Neurophysiol. 1994

Sarcom	ere and
fascicle	lengths

Lichtwark et al. J. Appl. Physiol. 2018

Muscle force cannot be directly measured

Muscle redundancy – biomechanical indeterminacy

- More force-carrying structures (including muscles) crossing joint than degrees of freedom
- Mathematical description of joint mechanics is underdetermined
- Muscle force must be estimated by numerical optimization

Crowninshield & Brand, J. Biomech. 1981

Hill-type muscle models are not perfect

These models have errors >10% when predicting force from whole muscle.

Force predictions have r² between 0.8 in situ and 0.4 in vivo.

(R)

SEE

Sandercock and Heckman, 1997; Perreault et al., 2003 Wakeling et al., 2012; Lee et al., 2013 Kim et al., 2015; Dick et al. 2017

Assumptions in Hill-type models

- Muscle force depends on instantaneous activation, length and velocity
- Muscles contain a single contractile element whose properties are scaled in size
- Muscles are linear, mass-less actuators with constant thickness

Muscle force depends on contraction history

Does muscle force depend on instantaneous activation, length and velocity ?

Force enhancement: muscle force is elevated if it is actively stretched.

Abbott and Aubert, 1952; Cavagna and Citterio, 1974 Herzog and Leonard, 2002

Force depression: muscle force is depressed if it actively shortens

Abbott and Aubert, 1952; Marechal and Plaghki, 1979 Meijeretal., 1998; Herzog et al., 2000; McGowan et al. 2010

Muscle force depends on contraction history

Muscle force depends on fibre recruitment

 Do muscles contain a single fibre whose properties are scaled in size ?

Heterogeneity of fibre-types within muscle:

- Muscle contains many different fibres, that have a range of mechanical and metabolic fibre-type properties
- Recruitment patterns of different types of fibre affects force predictions

Motor unit activation, derived from EMG decomposition

Wakeling et al. 2012; Lee et al. 2013; Dick et al. 2017

Two (contractile-) element model

Muscle force depends on fibre recruitment

 Do muscles contain a single fibre whose properties are scaled in size ?

Orderly recruitment of slow MUs and preferential recruitment of fast MUs emerge from predictive simulations with two-element muscle models.

These match decompositions of experimental of EMG. Lai et al. 2017, 2018

Size matters too

Are muscles mass-less actuators ?

Muscle mass affects dynamics of contraction at larger sizes:

Whole muscles contract differently from constituent fibres

Günther et al. 2012; Ross and Wakeling 2016; Ross et al. 2017, 2018

Relative effects of muscle properties on predictions of force and power

Ross et al. 2018

Relative effects of muscle properties on predictions of force and power

activation
length
force
time [s]

Muscles as linear actuators

Are muscles linear actuators with constant thickness ?

Constant thickness assumption:

- Simplifies prediction of pennation angle given a fibre length
- Implicitly constrains the gearing to be constant and independent of load

Not supported by: experimental observations of variable gearing

Azizi et al. 2008; Wakeling et al. 2011

ultrasound images of contracting muscle

Maganaris et al. 1998; Randhawa et al. 2012

Muscles bulge during contraction

Muscle girth expands

Swammerdam, 1758; Baskin & Paolini, 1967 Maganaris et al. 1998; Randhawa & Wakeling, 2012, 2018 Bolsterlee et al., 2017

Myofilament lattice expands

Huxley, 1969; Williams et al. 2013; Daniel et al. 2013

Muscle fibre bundles expand

Smith et al. 2011

1D constant thickness models may be OK

Conclusions

- Muscle force cannot be experimentally measured in humans, but is necessary to understand function and dysfunction
- Models must be used to predict forces, and thus function
- Hill-type models are common,
 - in part due to computational simplicity
 - ➢ but, still lack desirable accuracy
- Current progress is being made in understanding the effects of:
 - titins and history-dependent properties
 - recruitment of different types of motor unit
 - size effects for understanding whole muscle function
 - > 3D effects and tissue properties and their effect on muscle quality
- These combined factors will be needed for future models to improve their ability to predict muscle forces

Special thanks to:

Adrian Lai Andy Biewener Avleen Randhawa David Ryan Emma Hodson-Tole Hadi Rahemi Nilima Nigam Sabrina Lee Sebastian Dominguez Sidney Morrison Steph Ross **Taylor Dick**

NSERC Canada

